Ground Pc3–Pc5 wave power distribution and response to solar wind velocity time variations
نویسندگان
چکیده
ED P RO OF Abstract We examine the magnetospheric wave power in the Pc3–Pc5 range in terms of its growth and decay characteristics and its distribution in L shell in response to the interplanetary plasma bulk velocity, VSW. We use linear and nonlinear (rank-order) correlation and filtering methods to quantify the effective coupling of the wave power to VSW variations. These methods are applied to measurements from 26 magnetometers of the IMAGE array and NOAA’s GOES-10 spacecraft at geosynchronous orbit, taken over 2 years of solar-maximum activity (2002–2003). We find that the ground ULF wave power is structured in the range 3.5oLo6.4 and distributed uniformly in the range 6.4oLo15 (uncertainties in L are estimated to be 70.5). The response of the wave power to the VSW is characterized by an increase starting 3 days before the VSW peak, intensifying several hours before the peak, and is followed by a fast decrease in the next 2 days. The rapid decay of ULF waves has two stages: one at t 1⁄4 672 h before the solar wind velocity reaches its peak, and one at the VSW peak, t 1⁄4 0. We suggest that the first one is brought about by wave–particle interaction with inner-magnetospheric populations while the second one is a dVSW/dt effect. The correlation results are confirmed by calculating the finite-impulse response, which shows clearly the decay of the ULF waves after the VSW peak. The response of the wave power at geosynchronous orbit is remarkably similar to that of the ground wave power at comparable L shells. The above findings characterize the inner-magnetospheric response to interplanetary high-speed streams, as opposed to the more short-lived, higher-amplitude response to CMEs. r 2006 Published by Elsevier Ltd.
منابع مشابه
A solar-wind-driven empirical model of Pc3 wave activity at a mid-latitude location
In this paper we describe the development of two empirical models of Pc3 wave activity observed at a ground station. The models are tasked to predict pulsation intensity at Tihany, Hungary, from the OMNI solar wind data set at 5 min time resolution. One model is based on artificial neural networks and the other on multiple linear regression. Input parameters to the models are iteratively select...
متن کاملOptimal Coordinated Voltage Control in Distribution Networks in presence of Solar and Wind Power Plants Considering Uncertainties
Abstract: In the last decade, the amount of distributed generation connected to the distribution network is increasing. The presence of distributed generation resources in distribution systems has a great influence on its behavior and it is necessary to consider the impact of these resources on the distribution network design. In this study, Optimal Coordinated Voltage Control (OCVC) using wind...
متن کاملPc5 geomagnetic field fluctuations at discrete frequencies at a low latitude station
A statistical analysis of the geomagnetic field fluctuations in the Pc5 frequency range (1–5 mHz) at a low latitude station (L = 1.6) provides further evidence for daytime power peaks at discrete frequencies. The power enhancements, which become more pronounced during high solar wind pressure conditions, may be interpreted in terms of ground signatures of magnetospheric cavity/waveguide compres...
متن کاملUnusual strong quasi-monochromatic ground Pc5 geomagnetic pulsations in the recovery phase of November 2003 superstorm
Unusually large-amplitude morning Pc5 magnetic pulsations during the recovery phase of the huge magnetic storm in November 2003 have been studied by using ground-based multi-point observations. Two main spectral Pc5 enhancements were observed: at f≈2 mHz, which featured slowly increasing frequency with decreasing latitude, and at f≈3 mHz, which was latitude independent. The Pc5 pulsations were ...
متن کاملStatistical study of the effect of ULF fluctuations in the IMF on the cross polar cap potential drop for northward IMF
[1] Recent studies showed that, regardless of the orientation of the Interplanetary Magnetic Field (IMF), ULF wave activity in the solar wind can substantially enhance the convection in the high latitude ionosphere, suggesting that ULF fluctuations may also be an important contributor to the coupling of the solar wind to the magnetosphere‐ionosphere system. We conduct a statistical study to und...
متن کامل